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Charge transfers in complex transition metal alloys (Ti2Fe)

G. Abramovici a
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Abstract. We introduce a new Non-Orthogonal Tight-Binding model, for complex alloys, in which elec-
tronic structure is characterized by charge transfers. We give the analytic calculation of a charge transfer,
in which overlapping two-center terms are rigorously taken into account. Then, we apply numerically this
result to an approximant phase of a quasicrystal of Ti2Fe alloy. This model is more particularly adapted
to transition metals, and gives realistic densities of states.

PACS. 61.44.-n Semi-periodic solids – 61.66.Dk Alloys – 71.10.-w Theories and models of many electron
systems

1 Introduction

This work is part of a more general study of local order in
quasicrystals or complex structures. We want to study sta-
bility versus local atomic displacement, in these alloys, so
we first need to find a description of the electronic struc-
ture, which remains valid up to the second order of any
(atomic) perturbation.

We have chosen charge transfer as the order parameter.
It is indeed partly responsible for the electronic distribu-
tion in transition metals, and was already pointed out as
a potentially rich parameter [1]. In addition, we were in-
terested in making an analytical work on these electronic
states, so that we could apply it in further studies on the
atomic structure: the choice of charge transfer proved in-
deed very efficient in that line. More precisely, we have
used Slater screening corrections to calculate the charge
transfers, which on top allows a nice description of the
atomic structure. Then, we have built a new model, which
may be decomposed as follow.

– In a first step, we give an explicit analytical ex-
pression of the effective Hamiltonian: We began from
Friedel’s determination of the d-band in transition met-
als [2], since the first steps of his calculation apply to non-
periodic order. He ignored some overlapping interatomic
terms, which limits its validity to first order; however, one
could since long remedy this shortcoming, by using Non-
orthogonal Tight-Binding approximation (NTB), where
overlapping interatomic terms are included [3]. So we de-
veloped a new NTB formalism, in which charge transfer
is the local order parameter. In all literature, only numer-
ical calculations have been done so far, so this is the first
explicit analytical calculation of energetical terms with a
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realistic geometrical environment, in the case of complex
alloys.

– Then, we use the moment method, introduced by
Haydock, but we refined the recurence equations, in order
to include exactly all overlapping terms.

– Eventually, we get an analytical equation for the
charge transfer.

This model is also presented elsewhere [4]. We only
consider electrons in the 3d (valence) band. The atomic
lattice is fixed, and each atomic element is characterized
by its core charge Zi (nucleus charge plus core electrons).
The charge transfer simply writes δN = Ni−Zi, where Ni
is the real charge level (Nc = 2− h conduction electrons,
where h is a uniform hibridization coefficient, and Nv =
Ni − 2 + h valence electrons); we chose h = 1. Here, 3d
electrons are free from intraatomic interactions.

We have calculated numerically the charge transfers
for Ti2Fe f.c.c. alloy. There are 96 atoms per unit cell,
and this crystal, which has symetry O7

h, is an approxi-
mant of a quasicrystal. We obtain very realistic values
(about 0.5 electrons), contrarily to all previous simula-
tions using standard Tight-Binding approximation, which
overestimate the charge transfers [5].

The density of states we have calculated, has a similar
shape than those obtained from Linear Muffin-Tin Orbital
(LMTO) calculations [6], although some peaks are moved.
This is by itself very satisfactory, and indicates that our
model is consistent, since we use no adjustable parame-
ter (instead of [5], for instance). Thus, we can be more
confident with the charge values we calculate.

I will now present the detailed analytic calculation of a
charge transfer, which suports the new NTB model, then
the numerical computation of the charge transfers in a
Ti2Fe crystal, by a self-similar recurrence method. We will
afterwards discuss our numerical results.
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2 Analytic calculation of the charge transfer

We expand an electronic state |φ〉 in the orbital basis
{|knlm〉}, where atom k (in position Rk) is the center,
and |nlm〉 is the usual hydrogenate state; |knlm〉 obeys
equation:(

p2

2µ
−

Z∗kq
2

4πεo|r−Rk|

)
|knlm〉 =

Ek

n2
|knlm〉 (1)

where standard quantum mechanics gives Ek = −Z∗2k EI ,
EI = q2

/
8πεoao ' 13.6 eV, ao ' 0.53 Å is Bohr radius,

and Z∗k = Zk − (Nk − 3 + h)ηs is the screened core charge
seen by the electron at site k with ηs = 0.35 [7]. Here
again, we will only consider n = 3 and l = 2.

Then |φ〉 =
∑
akm|k32m〉 obeys Schrödinger’s equa-

tion:

( p2
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+
∑
k

Vk
)
|φ〉 =

Ek

9
|φ〉 (2)

where Vk = (Nk − Zk)q2
/

4πεo|r −Rk| if the electron is

at site i 6= k, and Vk is defined in (1) otherwise.

We will now expand (2) on the same basis. We must in-
sist on the fact that {|knlm〉} is not orthogonal, and there-
fore, the usual closure relation does not hold. Instead, we
will use the generalised closure relation (cf. Appendix A):
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then, multiplying, on the left we get

See equations above.

We write Vk|k32m〉 = (Ek/9 − p2/2µ)|k32m〉 from (1),
and
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where the shift integral Ikok1
m1m2

= 〈k132m1|Vko |k132m2〉,

and the overlapping interatomic integrals Sk1
m1

k2
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=

〈k132m1|k232m2〉 and Tk1
m1

k2
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= 〈k132m1|
p2

2µ |k232m2〉 we

need to calculate explicitely.

2.1 Shift integral

The shift integral writes:

Ikok1
m1m2

=

∫
dr r2dΩ |f32(r)|2

(Nk1
−Zk1

)q2
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2 (Ω)Y m2
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(4)

where

Ro ≡ Rko −Rk1 ,

f32(r) = −
√

2/5(λk1)7/2(2/3)r2e−rλk1

is the radial wave function (we put λk = Z∗k/(3ao)) and
Yml is the normalized spherical harmonics. Then we use
the standard angular expansion:

1

|r−Ro|
=
∞∑
k=0

k∑
m=−k

4π

2k + 1

inf(r,Ro)
k

sup(r,Ro)k+1

× (−1)mY mk (Ω)Y −mk (Ωo)



G. Abramovici: Charge transfers in complex transition metal alloys (Ti2Fe) 41

which gives:
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The second integral writes
√
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obtain corresponding angular representation K(k)(Ωo),
which are given in Appendix B. For the first integral we
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where u = λk1Ro and the exponential terms may be ne-
glected, as shown from further numerical computations.

2.2 Two-center integral

The interatomic two-center term writes:
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where R12 ≡ Rk1 −Rk2 . Then, we rotate all coordinates
u→ R(R12)u, following notations in [10], and find a sim-
ilar expression, with now a factor
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and m1, m2 become m′1, m′2 in the integral.

Integration over azimutal coordinates φ1, φ2 just
brings 2πδm′1 m′2 ; ±m1 give equal contributions. Using:
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and including the complex phase factor, (7) becomes:
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with L(0) = Id, L(2) = (7K(2) − Id)/3 and L(4) =
12K(4)/5+4K(2)/3−4Id/105, which happen to write just
like orthogonal projectors (see Appendix B).

Now the remaining integral only depends on m =
|m′1| = 0, 1, 2. Using [9] and MATHEMATICA language,
we finally get:
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where ui = λkiR12 and Pm are rational polynomials, given
in Appendix C.

When u1 → u2, (8) is indeterminate, and is replaced
by
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For T , we write:

p2

2µ
|k132m1〉 = −

~2

2µ

∂

r2∂r

(
r2 ∂.

∂r

)
+

L2

2µr2
|k132m1〉

and the corresponding radial wave function is:

−
~2

2µ

∂

r2∂r

(
r2 ∂f32

∂r

)
+

6~2f32

2µr2

= −
2

3

√
2

5
(λk1)

7
2 (6λk1r − λ

2
k1
r2)e−λk1



42 The European Physical Journal B
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and, substituing in (6) f32 by the latter, we get similar
expressions to (8) or (8bis), with new polynomials Qm
and Qlim

m (given in Appendix C).

2.3 Effective Hamiltonian

Putting all expressions together, and doing all approxima-
tions that come straightforward, we finally get:

See equation (9) above

where gm(x, y) =
(

2
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may be neglected, as shown from further numerical com-
putations.

This is exactly the formula after (6) in reference [4],
therefore we have explicitely calculated the effective
Hamiltonian H̃, in terms of local parameters Rk and band
levels Nk. In place of Nk, we can also use charge transfer
Nk−Zk, which will be chosen as the local order parameter.

2.4 Charge transfer equation

With these explicit expression of S and H̃, we can now
develop the energy moments ai, bi, through the recur-
rence equation given in [4]. Then, using the formulas given
in [11], we can express the 3d band level Nv in terms of
these moments. Since Nk = Nv + Nc where we took Nc
constant ' 1, we have eventually expressed the charge
transfer Nk − Zk in terms of itself and local parameters.

The computation of the solution of this equation, the
fact it exists and is unique, remain then a matter of nu-
merical analysis, which we have performed successfully.

3 Numerical calculation of the charge
transfers of Ti2Fe

We wanted an alloy made of transition metals, so we chose
Ti2Fe alloy, in which a stable quasicrystalline phase has

been discovered [12]. But we chose an approximant f.c.c.
phase, where there are only three non equivalent sites, to
make this first numerical computation easier. There are
96 atoms in the unit cell; in fact, all the 32 iron atoms are
located at the vertices of tetrahedra (Wyckoff position e);
while 64 titanium atoms form complex structures around
those tetrahedra: 48 equivalent titanium (Wyckoff posi-
tion f) have the same distance from the iron atoms, we
will call them Tia; while the left 16 equivalent titanium
(Wyckoff position c) are more distant. If you consider the
polygon formed by the 22 first-near neighbourgs of a tetra-
hedron, 12 Tia atoms have five neighbourgs, 6 Tia atoms
have six neighbourgs (they seem inequivalent because we
only consider one tetrahedron), and the 4 left Tib atoms
also have six neighbourgs. In the whole bulk, Fe and Tib
atoms have 12 first-neighbours, while Tia has 14 [13].

As explained in [4], we need no Slater-Koster param-

eters now, since the Hamiltonian H̃ is explicitely known,
with all non-diagonal and non-orthogonal exact terms. If
you except h, the only free variable is the charge transfer,
which we calculate self-consistently.

Moreover, we impose a strict electronic neutrality dur-
ing all the calculations (we are only considering a bulk),
which keeps the shift integral not too high. This brings
equation 2NFe + 3NTia + NTib = 2ZFe + 3ZTia + ZTib

where the (3d)-band levels correspond to the three non-
equivalent sites. This numerical calculation gives no trou-
bles, except for the factor containing exponentials and
polynomilas, like in (8), which raises gorgeous numerical
precision difficulties. To solve them, we have used sev-
eral Taylor-Young developments, the order of which are
depending on |λk1 −λk2 |, which we got through MATHE-
MATICA language. We carefully verified that our solution
is unique and that all our terms had significant influence in
the results, we also examined the influence of all possible
errors: for instance, we could not determinate exactly the
band limits in our energetic spectrum; we also found that
the exponential factor, in the shift integral, is neglectible,
which is not surprising but very satisfactory since this
factor is of the same order as the second-neighbour cor-
rections, which we skipped at first.

Following all these prescriptions, we obtained very re-
alistic densities of electronic state curves (Fig. 1), which
are similar to those obtained from LMTO calculations [6],
and therefore are very satisfactory. More precisely, the
comparison of the partial densities of Fe shows a good
fit, while it is average for Tia and even bad for Tib (our
main peack is moved on the left). So, only comparing with
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Fig. 1. Total density of electronic states (solid line) of Ti2Fe in
a f.c.c. approximant phase, and corresponding partial densities
of states of Fe (dashed line), Tia (dot-dashed line) and Tib
(dotted line).

experimental data could discriminate between these the-
oretical predictions. On top, it is impossible to extract
any charge transfer value from the LMTO computation,
whereas we obtain δNFe = 0.417, δNTia = −0.063 and
δNTib = −0.103.

The signs of the charge transfers are not surprising.
Iron atoms, which are more electronegative than titanium,
will form negative clusters, while the Tia and Tib atoms
around will charge positively.

Finally, we have investigated the influence of the hy-
bridization parameter h which proves small.

4 Conclusion

By this method one could successfully predict the elec-
tronic structure of valence electrons, in terms of charge
transfers. It seems particularly well adapted to complex
structures, for which we give the electronic density of
states after not very long computer calculations. We point
again here that the structure has been then characterized
in detail for all atoms, and takes into account their real
local environment.

It is straightforward to extend our formulas to the case
of second or third series transition metals. Since we take
very roughly into account all hybridization mechanism, it
is not so obvious to apply the model to small elements like
Aluminium, although one might thing that charge transfer
takes this hybridization into account, in an approximate
way.

Therefore, we intend to apply our method to complex
structures, such as the α phase of Mn, the β phase of W,
or the i phase of NiCr [14] etc. But the major development
will be the study of electronic modifications when an atom
is moved, in the purpose of investigating the stability of
local defects in those complex structures, in particular in
quasicrystals.

I would like to thank Françoise Dénoyer, Marie-Catherine
Desjonquères, Daniel Spanjaard and Guy Trambly for fruit-
ful discussions or advices.

Appendix A

Let us consider N = S − Id; when the interatomic over-
lapping terms are not too big, the L∞ norm |||N ||| < 1,
thus S is reversible and

Id = S−1S = S
(
Id−N +N2 −N3 + · · ·

)
and (3) follows readily.

Appendix B

It is easier to calculate the angular matrix in the real basis
formed upon (|xy〉, |yz〉, |zx〉, |x2−y2〉, |3z2−r2〉). We then
calculate the following expressions: K(0) = Id, K(2) =
PMP † and K(4) = PNP †, where

P =
(
v1 v2 v3 v4 v5

)
,

M =
1

7


−2 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2

 ,

N =
1

21


10 0 0 0
0 1 0 0 0
0 0 −4 0 0
0 0 0 −4 0
0 0 0 0 6

 .

Here v1 =


cos(θ) cos(2φ)
− sin(θ) cos(φ)
sin(θ) sin(φ)
− cos(θ) sin(2φ)

0

 ,

v2 =


1
4 (cos(2θ) + 3) sin(2φ)
− 1

2 sin(2θ) sin(φ)
− 1

2
sin(2θ) cos(φ)

1
4 (cos(2θ) + 3) cos(2φ)
√

3
4

(1− cos(2θ))

 ,

v3 =


− sin(θ) cos(2φ)
− cos(θ) cos(φ)
cos(θ) sin(φ)
sin(θ) sin(2φ)

0

 ,

v4 =


1
2

sin(2θ) sin(2φ)
cos(2θ) sin(φ)
cos(2θ) cos(φ)

1
2

sin(2θ) cos(2φ)

−
√

3
2 sin(2θ)

 ,

v5 =



√
3

4 (cos(2θ) − 1) sin(2φ)

−
√

3
2 sin(2θ) sin(φ)

−
√

3
2 sin(2θ) cos(φ)

√
3

4 (cos(2θ)− 1) cos(2φ)
− 3

4 cos(2θ)− 1
4


are orthonormal.

and L(0) is the orthogonal projector on v5, L(2) on (v3,v4)
and L(4) on (v1,v2).
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Appendix C

Through MATHEMATICA, we calculate:

P0(u, v) = u
(

16
[
30
(
− 36(v + v2) + u2v − 17v3 + u2v2 − 5v4)− u4v + 12u2v3 − 31v5

]
+ u6 + 5u4v2 + 67u2v4 − 73v6 − u6v − 5u4v3 + 13u2v5 − 7v7 +

u6v2

3
− u4v4 + u2v6 −

v8

3

)
P1(u, v) = u

(
240
[
2
(
24(v + v2)− u2v + 11v3 − u2v2 + 3v4)− u2v3 + v5

]
+ u6 + 21u4v2 − 45u2v4 + 23v6 − u6v + 3u4v3 − 3u2v5 + v7

)
P2(u, v) = u

(
24
[
10
(
− 12(v + v2) + u2v − 5v3 + u2v2 − v4)− u4v + 2u2v3 − v5

]
+ u6 − 3u4v2 + 3u2v4 − v6

)
Q0(u, v) = 96

[
90(u2 + v2 + u2v + v3)− 2u4 + 39u2v2 + 43v4 − 2u4v + 9u2v3 + 13v5

]
+ 4u6 − 60u4v2 + 108u2v4 + 268v6 − 3u6v − 31u4v3 − 9u2v5 + 43v7

+ 3u6v2 − u4v4 − 7u2v6 + 5v8 −
u6v3

3
+ u4v5 − u2v7 +

v9

3

Q1(u, v) = 48
[
4
(
− 30(u2 + v2 + u2v + v3) + u4 − 12u2v2 − 14v4 + u4v − 2u2v3 − 4v5)

+ 2u4v2 + u2v4 − 3v6
]
− 7u6v − 3u4v3 + 27u2v5 − 17v7 + u6v2 − 3u4v4 + 3u2v6 − v8

Q2(u, v) = 48
[
30(u2 + v2 + u2v + v3)− 2u4 + 9u2v2 + 13v4 − 2u4v − u2v3 + 3v5

]
+ 6u6 + 6u4v2 − 30u2v4 + 18v6 − u6v + 3u4v3 − 3u2v5 + v7

and the limit of
(
e−uPm(v, u) − e−vPm(u, v)

)
(uv)7/2

/
(

(u2 − v2)7e−u
)

, when v 7→ u, is:

P lim0 (u) = 1 + u+
5u2

21
−

2u3

21
−

2u4

35
−

u5

315
+

u6

315

P lim1 (u) = 1 + u+
2u2

7
−
u3

21
−
u4

21
−

u5

105

P lim2 (u) = 1 + u+
3u2

21
+

2u3

21
+

u4

105

Qlim0 (u) = 1 + u+
u2

35
−

32u3

105
−

8u4

105
+
u5

21
−

u6

315

Qlim1 (u) = 1 + u+
4u2

35
−

23u3

105
−

3u4

35
+

u5

105

Qlim2 (u) = 1 + u+
13u2

35
+

4u3

105
−

u4

105
·
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